- Home
- Program
- Program Overview
- Full Scientific Program
- Technical Categories
- Our motto: LATAM Tutorial Session
- Plenary Speakers
- Keynote Speakers
- Special Invited Sessions
- Young Professionals Networking Event
- Women in Nanotechnology Event
- Tutorials Special Session
- Student Design Competition
- NanoXpress Event
- Workshops Day
- Legacy Project for Gijón
- Authors
- Registration
- Whova App
- Support & Exhibitors
- Venue & Travel
- About
- Blog
- Home
- Program
- Program Overview
- Full Scientific Program
- Technical Categories
- Our motto: LATAM Tutorial Session
- Plenary Speakers
- Keynote Speakers
- Special Invited Sessions
- Young Professionals Networking Event
- Women in Nanotechnology Event
- Tutorials Special Session
- Student Design Competition
- NanoXpress Event
- Workshops Day
- Legacy Project for Gijón
- Authors
- Registration
- Whova App
- Support & Exhibitors
- Venue & Travel
- About
- Blog
Our motto: An extended bridge to Latin America
Monday 8 July - 16:00 PM - 19:20 PM
Laboral Ciudad de la Cultura of Gijón
The motto for IEEE NANO 2024, “An extended bridge to Latin America”, reflects our commitment to fostering inclusivity and knowledge exchange across borders. As part of this initiative, we are hosting a tutorial session with invited speakers delivering their presentations in Spanish and Portuguese. These talks will be live-subtitled in English, facilitating seamless communication. The session will be streamed online, allowing students from across Latin America to participate. This approach exemplifies our dedication to creating a bridge for knowledge and collaboration, uniting the scientific community in a spirit of diversity and cooperation. Check our program here.
SPEAKERS
Diana Leitao
Department of Applied Physics and Science Education, Eindhoven University of Technology (TU/e), The Netherlands.
Sensores magnéticos (PT)
Magnetic sensors (EN)
Magnetoresistive sensors: open challenges and new features
Magnetoresistive sensors: open challenges and new features
Department of Applied Physics, Eindhoven University of Technology, The Netherlands
Magnetoresistive sensors can deliver high sensitivity and spatial resolution in magnetic field detection, making them ideal for applications in navigation, robotics, or biomedicine. Current technology has a high level of maturity, as evidenced by its commercial implementation. Yet, open challenges remain to be addressed to fulfill the milestones proposed in the roadmap and thus maintain competitiveness [1]. In this tutorial, I will cover recent strategies to engineer key sensor characteristics such as field sensitivity, detection limit, or resilience to high temperatures and crossed fields [2,3]. I will conclude with a discussion regarding future perspectives on the design of sensing devices with multifunctional and adjustable features.
[1] C Zheng et al. IEEE Transactions on Magnetics 55 (2019) 1-30
[2] P Araujo, DC Leitao et al. Nanotechnology 34 (2023) 435502
[3] P Araujo, DC Leitao, et al. IEEE Sensors Journal. 2024
Sensores Magnetoresistivos: desafios por resolver e novas características Diana C Leitao
Os sensores magnetoresistivos demonstram elevada sensibilidade e resolução espacial na deteção de campos magnéticos, tornando-os ideais para aplicações em navegação, robótica ou biomedicina. A tecnologia atual tem um alto nível de maturidade, como evidenciado pela implementação comercial. No entanto, para atingir os marcos propostos no roteiro [1], e de modo a mater a tecnologia competitiva, vários desafios permanecem ainda em aberto. Neste tutorial, irei abordar estratégias recentes para manipular características-chave do sensor, como a sensibilidade ao campo, o limite de deteção ou a resistência a altas temperaturas e campos cruzados [2,3]. Concluirei com uma discussão sobre perspetivas futuras relativamente ao desenho destes dispositivos sensores com características multifuncionais e ajustáveis.
[1] C Zheng et al. IEEE Transactions on Magnetics 55 (2019) 1-30
[2] P Araujo, DC Leitao et al. Nanotechnology 34 (2023) 435502
[3] P Araujo, DC Leitao, et al. IEEE Sensors Journal. 2024
Diana Leitao graduated in Applied Physics from University of Porto, and has a PhD in Physics from University of Porto and Materials Science Institute of Madrid ICMM-CSIC. She then joined INESC Microsystems and Nanotechnologies in Lisbon, first as a postdoctoral researcher, and later as a FCT Investigator Starting Grantee to lead her research line in magnetic nanodevices. Since September 2021 she has been an Assistant Professor at Eindhoven University of Technology. Her research focus is on exploring novel thin-film stackings, designs, and hybrid technology integration to improve the performance of magnetoresistive sensing devices and provide added functionalities. Diana Leitao actively contributes to the international magnetism community via IEEE Magnetics Society and European Magnetism Association (EMA). She is also involved in the organization of main conferences in her research area.
Franciscarlos Gomes da Silva
Instituto de Física, University of Brasília, Brazil.
Nanopartículas para Biomedicina (PT)
Nanoparticles for Biomedicine (EN)
Nanoparticles for Biomedicine
Tutorial: Nanoparticles for Biomedicine
Building on Richard Feynman’s famous idea that ‘there’s plenty of room at the bottom,’ and demonstrating that working at a very small scale led to the development of nanotechnology, nanoparticles have become essential in our understanding of the world, particularly in medicine. In this tutorial, we will discuss the use of nanoparticles in advanced treatments such as magnetic and plasmonic hyperthermia, and look at their applications in drug delivery and antibacterial properties. This session highlights how nanoparticles are transforming medical treatments and improving healthcare.
Tutorial: Nanopartículas para Biomedicina
Baseando-se na famosa ideia de Richard Feynman de que “há muito espaço lá embaixo”, e demonstrando que trabalhar em uma escala muito pequena levou ao desenvolvimento da nanotecnologia, as nanopartículas tornaram-se essenciais na nossa compreensão do mundo, especialmente na medicina. Neste tutorial, discutiremos o uso de nanopartículas em tratamentos avançados, como hipertermia magnética e plasmônica, e examinaremos suas aplicações na entrega de medicamentos e em propriedades antibacterianas. Esta sessão destaca como as nanopartículas estão transformando os tratamentos médicos e melhorando a assistência à saúde.
Dr. Franciscarlos Gomes da Silva. is Ph.D. in Physics (2013) with a co-tutelle thesis between Sorbonne Université (Paris VI, Paris-France) and Universidade de Brasilia (UnB-Brasília- Brazil). He was a postdoctoral researcher at University of Brasília (2013–2018) and at Istituto di Struttura della Materia at the Nanostrucutred Magnetic Materials Laboratory in Rome, Italy (2017). Currently, he is a collaborator researcher at the Instituto de Física at University of Brasília. His current research is related to the design and synthesis of magnetic nanomaterials, to the study of the magnetic properties of magnetic nanoparticles assemblies and the development of advanced magnetic nanomaterials for several applications.
Isabel Díaz
Instituto de Catálisis y Petroleoquímica (ICP-CSIC), Spain.
Zeolitas nanomodificadas para purificar el agua (ES)
Nano-modified zeolites to purify water (EN)
Modified natural zeolites for the removal of fluoride form drinking waters
Modified natural zeolites for the removal of fluoride form drinking waters
Fluoride is a geogenic pollutant present in volcanic rocks surrounding the aquifers in over 25 countries. As a result of long contact times under climate stress, fluoride leaches out to groundwater becoming hazardous in some areas of the planet, like the Ethiopian Rift Valley, where groundwater is the only possible source of clean water. We developed a fluoride filter based on natural zeolites, modified with hydroxyapatite to selectively trap fluoride; later on, the technology was efficiently implemented in the Ethiopian Rift Valley. The added value of using natural zeolites to remove fluoride, relies on the soil conditioning properties of this natural mineral, that allows a second use of the exhausted filter. After saturated, the natural zeolite-based fluoride filter, maintains its zeolitic properties while the amount of fluoride attached remains below the levels of the natural soils and shows little mobility. In this presentation we narrate the implementation of a natural zeolite-based technology for defluoridation in Ethiopia, and demonstrate the possibility of using saturated fluoride zeolite (FZ) for agricultural soil conditioning. Two treatments, one without fertilizer and one with fertilizer were conducted using Wheat bread (Triticum aestivum L.) as a test crop. Pristine natural zeolite was used for comparative purposes (PZ). Plant growth parameters showed better yield due to the effect of the zeolites. The presence of fluoride in the soil and in the plant increased due to the presence of saturated fluoride zeolite, yet the content remains way below the limit for human consumption, and below the common levels in surrounding soils. Therefore, the application of saturated fluoride zeolite at a lower dose with and without fertilizers could serve as a second use for the conditioning of local harvesting.
References
[1] L. Gómez-Hortigüela, A. Pinar, J. Pérez-Pariente, T. Sani, Y. Chebude, I. Díaz, Microporous and Mesoporous Materials, 193 (2014) 93-102.
[2] L. Gómez-Hortigüela, J. Pérez-Pariente, R. García, Y. Chebude, I. Díaz, Separation and Purification Technology, 120 (2013) 224-229.
[3] L. Gómez-Hortigüela, J.Pérez-Pariente, I. Díaz Carretero, Y. Chebude, International Patent, WO2014131926A1, (2014).
[4] L. Gomez-Hortiguela, J. Pérez-Pariente, Y. Chebude, I. Díaz, RSC Advances, 4 (2014) 7998-8003.
[5] T. Sani, L. Gómez-Hortigüela, Á. Mayoral, Y. Chebude, J. Pérez-Pariente, I. Díaz, Microporous and Mesoporous Materials, 254 (2017) 86-95.
[6] T. Sani, L. Gómez-Hortigüela, J. Pérez-Pariente, Y. Chebude, I. Díaz, Separation and Purification Technology, 157 (2016) 241-248.
[7] I. Díaz, Z. Bezu, A.M. Taddesse, Y. Chebude, F. A. Moreno-Arangüena, L. Gómez-Hortigüela, J. Pérez-Pariente, submitted Microporous and Mesoporous Materials.
Zeolitas naturales modificadas para la eliminación de fluoruros en aguas potables.
El fluoruro es un contaminante geogénico presente en las rocas volcánicas que rodean los acuíferos en más de 25 países. Como resultado de largos tiempos de contacto bajo estrés climático, el fluoruro se filtra hacia las aguas subterráneas, volviéndose peligroso en algunas áreas del planeta, como el Valle del Rift etíope, donde las aguas subterráneas son la única fuente posible de agua limpia. Desarrollamos un filtro de fluoruro basado en zeolitas naturales, modificadas con hidroxiapatita para atrapar selectivamente el fluoruro; posteriormente, la tecnología se implementó de manera eficiente en el Valle del Rift etíope. El valor añadido de usar zeolitas naturales para eliminar el fluoruro reside en las propiedades de acondicionamiento del suelo de este mineral natural, lo que permite un segundo uso del filtro agotado. Una vez saturado, el filtro de fluoruro basado en zeolitas naturales mantiene sus propiedades zeolíticas mientras que la cantidad de fluoruro adherido permanece por debajo de los niveles de los suelos naturales y muestra poca movilidad. En esta presentación contamos la implementación de una tecnología basada en zeolitas naturales para la defluorización en Etiopía, y demostramos la posibilidad de usar zeolita saturada de fluoruro (FZ) para el acondicionamiento del suelo agrícola. Se realizaron dos tratamientos, uno sin fertilizante y otro con fertilizante, utilizando trigo pan (Triticum aestivum L.) como cultivo de prueba. Se utilizó zeolita natural prístina para fines comparativos (PZ). Los parámetros de crecimiento de las plantas mostraron un mejor rendimiento debido al efecto de las zeolitas. La presencia de fluoruro en el suelo y en la planta aumentó debido a la presencia de zeolita saturada de fluoruro, aunque el contenido se mantuvo muy por debajo del límite para el consumo humano y por debajo de los niveles comunes en los suelos circundantes. Por lo tanto, la aplicación de zeolita saturada de fluoruro a una dosis más baja, con y sin fertilizantes, podría servir como un segundo uso para el acondicionamiento de la cosecha local.
Referencias
[1] L. Gómez-Hortigüela, A. Pinar, J. Pérez-Pariente, T. Sani, Y. Chebude, I. Díaz, Microporous and Mesoporous Materials, 193 (2014) 93-102.
[2] L. Gómez-Hortigüela, J. Pérez-Pariente, R. García, Y. Chebude, I. Díaz, Separation and Purification Technology, 120 (2013) 224-229.
[3] L. Gómez-Hortigüela, J.Pérez-Pariente, I. Díaz Carretero, Y. Chebude, International Patent, WO2014131926A1, (2014).
[4] L. Gomez-Hortiguela, J. Pérez-Pariente, Y. Chebude, I. Díaz, RSC Advances, 4 (2014) 7998-8003.
[5] T. Sani, L. Gómez-Hortigüela, Á. Mayoral, Y. Chebude, J. Pérez-Pariente, I. Díaz, Microporous and Mesoporous Materials, 254 (2017) 86-95.
[6] T. Sani, L. Gómez-Hortigüela, J. Pérez-Pariente, Y. Chebude, I. Díaz, Separation and Purification Technology, 157 (2016) 241-248.
[7] I. Díaz, Z. Bezu, A.M. Taddesse, Y. Chebude, F. A. Moreno-Arangüena, L. Gómez-Hortigüela, J. Pérez-Pariente, submitted Microporous and Mesoporous Materials.
Isabel Díaz got her PhD in Chemistry in 2001, with research leaves at University of St. Andrews (UK), Lund University (Sweden), and Tohoku University (Japan). She was a Fulbright Fellow at the University of Massachusetts and the University of Minnesota during 2002 and 2003. She is currently a Senior Researcher at Instituto de Catálisis y Petroleoquímica, ICP-CSIC in Madrid, Spain. She is also Adjunct Professor at the Chemistry Department of Addis Ababa University, Ethiopia, were she was recruited as Full Professor for six years (2010-2016).
In June 2022 Dr. Díaz was appointed Deputy Vice-president of International Cooperation of CSIC. Her unit handles the strategy of the large international infrastructures at CSIC, as well as international cooperation with Africa and Latin America and the Caribbean.
Jorge Luis Cholula-Díaz
School of Engineering & Sciences, Tecnológico de Monterrey, Mexico.
Síntesis verde de nanoestructuras (ES)
Green synthesis of nanostructures (EN)
Green Synthesis of Metal-Based Nanostructures and Its Biomedical Applications
Green Synthesis of Metal-Based Nanostructures and Its Biomedical Applications
Nanotechnology has been recognized as a reliable strategy to respond to the global challenges related to the environment and healthcare issues of modern societies. However, the nanoscale has its own drawbacks, particularly those related to the sustainable production of nanomaterials. Thus, green nanotechnology has emerged as a new discipline in the synthesis of nanomaterials following the principles of green chemistry. Therefore, green nanotechnology has been conceived to target the synthesis of nanomaterials by using plant extracts, biomolecules, bacteria and viruses, natural waste materials or environment-friendly physical methods that either decrease or remove the need for harmful substances, such as toxic solvents or reducing and capping agents [1]. In terms of the biomedical application of nanostructures, green-synthesized metal-based nanomaterials have exhibited great potential as active antimicrobial, antiviral and anticancer agents [2]. In this talk, the green synthesis of metal-based nanostructures and their use in biomedical applications, specifically as bioactive anticancer agents against human breast cancer cells, will be covered.
Acknowledgements
The author thanks the School of Engineering and Sciences at Tecnologico de Monterrey for partial funding provided through the Research Chair of Photonics and Quantum Systems and the Department of Science (Chemistry and Nanotechnology) at Tecnologico de Monterrey for access to laboratories and characterization equipment.
References
[1] D. Lomelí-Marroquín et al., Int. J. Nanomedicine 14 (2019) 2171-2190.
[2] A. Nieto-Argüello et al., Nanomaterials 12 (2022) 779.
Síntesis verde de nanoestructuras a base de metales y sus aplicaciones biomédicas
La nanotecnología está considerada como una estrategia fiable para responder a los desafíos globales relacionados con el medio ambiente y los problemas de salud de las sociedades modernas. Sin embargo, la escala nanométrica tiene sus propios inconvenientes, particularmente aquellos relacionados con la producción sostenible de nanomateriales. Es por ello que la nanotecnología verde ha surgido como una nueva disciplina en la síntesis de nanomateriales siguiendo los principios de la química verde. Así, la nanotecnología verde ha sido concebida para dirigir la síntesis de nanomateriales utilizando extractos de plantas, biomoléculas, bacterias y virus, materiales de desecho naturales o métodos físicos respetuosos con el medio ambiente que disminuyen o eliminan la necesidad de sustancias nocivas, como disolventes tóxicos o agentes reductores y estabilizantes. En términos de la aplicación biomédica de las nanoestructuras, los nanomateriales de base metálica sintetizados de manera verde han mostrado un gran potencial como agentes antimicrobianos, antivirales y anticancerígenos activos. En esta charla, se abarcará la síntesis verde de nanoestructuras basadas en metales y su uso en aplicaciones biomédicas, específicamente como agentes bioactivos anticancerígenos contra células de cáncer de mama humano.
Agradecimientos
El autor agradece a la Escuela de Ingeniería y Ciencias del Tecnológico de Monterrey por la financiación parcial proporcionada a través de la Cátedra de Investigación en Fotónica y Sistemas Cuánticos y al Departamento de Ciencia (Química y Nanotecnología) del Tecnológico de Monterrey por el acceso a laboratorios y equipos de caracterización.
Referencias
[1] D. Lomelí-Marroquín et al., Int. J. Nanomedicine 14 (2019) 2171-2190.
[2] A. Nieto-Argüello et al., Nanomaterials 12 (2022) 779.
Dr. Jorge Luis Cholula-Díaz received his doctoral degree from the University of Leipzig (Germany) in 2013. Since 2015, Dr. Cholula-Díaz has been research professor at the School of Engineering and Sciences at Tecnologico de Monterrey (Mexico). His scientific research is focused on the green synthesis of different types of nanomaterials (noble metals and metal oxides) with diverse applications in nanomedicine, electrocatalysis and photocatalysis. Dr. Cholula-Díaz is member of the Mexican National Research System (SNI) and the Mexican Chemical Society.
PROGRAM
Monday 8 July
- 16:00 Opening
- 16:05 Ciencia divertida: experimentos caseros con Javier Fernández Panadero (Funny science: home-made experiments)
- 16:20 Isabel Díaz (CSIC, Spain): Zeolitas nanomodificadas para purificar el agua (Nano-modified zeolites to purify water).
- 17:00 Franciscarlos Gomes da Silva (Instituto de Física, University of Brasília, Brazil): Nanopartículas para Biomedicina (Nanoparticles for Biomedicine)
- 17:40 Coffee break
- 18:00 Jorge Luis Cholula-Díaz (Tecnológico de Monterrey, Mexico): Síntesis verde de nanoestructuras (Green synthesis of nanostructures).
- 18:40 Diana Leitao (Eindhoven University of Technology, The Netherlands): Sensores magnéticos (Magnetic sensors).
- 19:20 Closing